
Toward Systems Foundations for Agentic Exploration
Jiakai Xu∗

Columbia University
ax2155@columbia.edu

Tianle Zhou∗
Columbia University

mz2998@columbia.edu

Eugene Wu
Columbia University
ewu@cs.columbia.edu

Kostis Kaffes
Columbia University

kkaffes@cs.columbia.edu

Abstract
Agentic exploration, letting LLM-powered agents branch,
backtrack, and search across many execution paths, demands
systems support well beyond today’s pass-@-k resets. Our
benchmark of six snapshot/restore mechanisms shows that
generic tools such as CRIU or container commits are not fast
enough even in isolated testbeds, and they crumble entirely
in real deployments where agents share files, sockets, and
cloud APIs with other agents and human users. In this talk,
we pinpoint three open fundamental challenges: fork seman-
tics, which concerns how branches reveal or hide tentative
updates; external side-effects, where fork awareness must
be added to services or their calls intercepted; and native
forking, which requires cloning databases and runtimes in
microseconds without bulk copying.

1 Agentic Exploration
Large LanguageModels (LLMs) under an interaction–feedback
paradigm have demonstrated strong performance on every-
day tasks, where prior interactions determine following ac-
tions [8, 15]. More recently, LLM-powered agents function-
ing as system agents are used to interact directly with real
computing environments, such as operating systems and de-
velopment toolkits [4, 7, 11, 13, 16]. These tasks often require
actions that can alter the state, e.g., an application, a data-
base, a language runtime, or an operating system, making
the problem a partially observable, multi-step decision pro-
cess. Consequently, effective exploration—where an agent
actively interacts with a stateful environment, observes the
outcome of its actions, and making better multi-step strate-
gies—becomes critical. On Terminal-Bench’s [11] command-
line tasks, disabling exploration reduces accuracy by 27.2
percentage points (30.6% → 3.4%).

From pass@k to real exploration. Most exploration-
based agent frameworks implicitly assume that the environ-
ment can be restored to an initial reference state such that
applying the same set of actions leads to identical obser-
vations [1, 12]. This guarantees that exploration outcomes
on alternative branches are valid and reproducible. In prac-
tice, this is satisfied by benchmark harnesses that deliver
deterministic initial states and allow programmatic resets.

∗Both authors contributed equally to this research.

For example, WebArena[16] constructs each website as a
self-contained Docker image and provides scripts to reset to
the initial state, and OSWorld[13] offers task-specific initial-
state setup and uses VM images to recover the initial state.
In these scenarios, the baseline is always to pass@k from
a clean state: for each trial the harness resets to a pristine
snapshot and allows the agent to act until success/failure.

While the pass@k method is simple and works well when
per-step overheads are small or tasks are short, it performs
poorly on more complex, long-horizon, and realistic tasks
because agents tend to make mistakes due to losing sight
of ultimate goals and cumulative errors, i.e., non-observable
state changes, on long-horizon tasks [5]. The most common
solution to this problem is taking into account intermediate
states and doing exploration over them. For instance, Reflec-
tive Monte Carlo Tree Search (MCTS) [14] augments tree
search with budgeted rollouts and reward backtracking, and
HiAgent[6] uses hierarchical decomposition with task-level
checkpointing, both obtained impressive performance gains
in long-horizon tasks. On terminal-bench, simply allowing
for searching from intermediate states significantly improves
agent performance: We observe a 20 percentage point in-
crease in success rate on a selected subset of tasks when
applying MCTS instead of the baseline pass@2 method with
claude 3.5 sonnet model.

2 Exploration as State Restoration
Instead of always resetting to a clean initial state, supporting
exploration from intermediate states requires digital envi-
ronments to resume execution from that point onward. The
system infrastructure must ensure that replaying or branch-
ing from this state produces observations consistent with
the original execution. Systems can support such agentic
exploration with three different primitives (as displayed in
Figure1):

(1) Replay-to-node (prefix replay). For every explored search-
tree node, the runtime records the command prefix needed
to reach the node from the initial state. Revisiting the node is
achieved by re-executing the command prefix, obviating any
explicit state capture but incurring replay cost proportional
to the length of the command prefix and the overhead of the
individual commands.

1

https://orcid.org/0009-0006-2074-9109
https://orcid.org/0000-0003-4254-6688
https://orcid.org/0000-0002-0517-7206


(2) Snapshot/Restore. Alternatively, the system can mate-
rialize a snapshot at each node and reload it on demand,
trading storage overhead for 𝑂 (1) restoration latency.

(3) Backtracking. For any operation 𝑜𝑖 made that shifts the
environment state 𝑆𝑖 → 𝑆 ′𝑖 , a compensation operation 𝑐𝑖 =

𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑜𝑖 ) is pre-defined that shifts 𝑆 ′𝑖 → 𝑆𝑖 . Restoration
amounts to reversing all of the intermediate nodes, but relies
on pre-defined logic [2].

Figure 1. An LLM agent (orange) explores by taking differ-
ent actions, creating a branching tree in which every node
represents a distinct state of the environment. A prefix replay
(teal) starts from root and replay all commands on record; A
snapshot/restore (red) checkpoint method restores the state
directly to the target; a backtracking method (purple) goes
through all intermediate nodes to the target node.

Unlike humans, agent exploration involves frequent state
switching, which requires high-fidelity state restoration. Back-
trackingmethod, in practice, is therefore challenging because
many system-level operations are inherently irreversible
(e.g., file deletion, network I/O, time-sensitive actions). There-
fore, the backtrackingmethod is not good for general-purpose
exploration. Thus, a reliable agent system framework must
at least provide a minimal form of snapshot/restoration, en-
suring that distinct exploration operations can be conducted
with consistent observations.

In the simplest agent settings—such as a dialog agent
whose entireworld state is the conversation log—snapshotting
reduces to persisting that log, so recording the full state is
nearly trivial. In richer cases where the agent manipulates
a stateful environment, e.g., external software or operating-
system resources, snapshotting must encompass the full ex-
ecution context. At minimum, this includes:

• Filesystem — to preserve file modifications, e.g., installed
packages and intermediate artifacts in long-running tasks.

• Memory — to retain application and kernel state, e.g.,
heap memory.

Thus, a full system snapshot is necessary to enable seam-
less, multi-path exploration in realistic tasks. This insight
motivates the benchmark study that follows.

2.1 Existing Technologies and Benchmark
We measured snapshot and restore latency as the amount
of modified application memory or filesystem contents are
independently varied from 0𝐺𝐵 to 2𝐺𝐵. We compared six
commonly-used mechanisms: CRIU[3], Docker, Podman,
Hybrid (Podman + CRIU checkpoint),AWS VM snapshots,
and our prototype checkpoint-lite (CRIU + OverlayFS).
Table 1 summarizes the results, and five trends stand out:
1. AWS VMs, used by OS-World [13], are extremely slow to

re-instantiate as they are not built for this purpose.
2. Docker/Podman commits, used byWebArena [16], Agent-

Bench [9], and Terminal-Bench [11], rebuild containers
from image layers, i.e., filesystem state only and therefore
lose live memory. Startup latencies can exceed 10 s, mak-
ing them unsuitable for fine-grained agentic exploration.

3. CRIU offers fast memory snapshots by dumping process
memory andmetadata to a file, snapshotting and restoring
2 GiB process in 1.445 s, but snapshot cost rises linearly
with memory and it still ignores files.

4. Hybrid (Podman checkpoint) integrates CRIU with
container runtimes to capture memory and network, but
restore times remain high (up to 12 s for 2 GiB).

5. Our Go-based checkpoint-lite prototype orchestrates
CRIU dumps alongside OverlayFS layer snapshots, achiev-
ing near-CRIU times (1.757 s for 2 GiB state) while also
preserving filesystem state.

However, even before factoring in storage costs, existing
checkpoint/restore tools impose second-scale overheads, mak-
ing them unsuitable for rapid agentic exploration. Worse,
they are missing critical features that we show next are es-
sential for environment-agnostic agentic exploration.

3 The Missing Pieces
From snapshot/restore to native forking. What agen-

tic exploration really demands is not generic snapshot/re-
store but a lightweight, native fork primitive: the ability to
spin off multiple live logical copies of a running applica-
tion or system without duplicating unchanged data. Concep-
tually, it resembles fork() in Unix—copy-on-write pages,
lazy duplication—but extended to encompass higher-level
resources. Unlike traditional OS forks, an agent-targeted fork
must duplicate open file descriptors semantically: a child’s
write to a socket should not corrupt the parent’s stream, and
diverging file writes should land in per-branch overlays that
can later merge or discard cleanly. Achieving this requires
tighter integration between the OS, the storage stack, and
the language runtime so that forking incurs microseconds of
latency rather than the milliseconds or seconds we observe
with coarse snapshotting.

Generic, system-wide forking is useful, but some subsys-
tems benefit from domain-specific support. Databases are a
prime example: Neon’s “branching” Postgres [10] clones let
developers fork a live logical database, yet each branch takes

2



Table 1. Snapshot and restore time (in seconds) across different tools and configurations.

Operation Memory Disk criu Docker Podman checkpoint-lite Hybrid AWS-VM
Snapshot + Restore 0 GB 0 GB 0.060 0.416 0.835 0.418 1.657 353
Snapshot + Restore 1 GB 0 GB 0.760 / / 1.079 9.921 -
Snapshot + Restore 2 GB 0 GB 1.445 / / 1.757 18.154 -
Snapshot + Restore 0 GB 1 GB / 5.097 7.935 2.499 14.735 -
Snapshot + Restore 0 GB 2 GB / 6.915 12.914 4.622 26.648 -

Tested on a Linux server with 56-core Intel® Xeon® Gold 5512U CPU, 128GB RAM, running Ubuntu 24.04.2 LTS with Linux kernel 6.8.0.
Tool versions: CRIU 4.1, Docker 27.5.1, Podman 4.9.3, runc 1.2.5. checkpoint-lite is our own Go-based tool using CRIU + OverlayFS.

seconds to materialize–—far slower than the sub-millisecond
forks agents would need for interactive branching. Similar
gaps appear in language runtimes: Python’s multiprocess-
ing fork inherits bytecode and heap, but extension modules
holding GPU tensors or open sockets do not survive, forc-
ing full re-initialization. Bridging this gap calls for native
fork hooks inside components—–database engines that ver-
sion page caches in micro-seconds and runtimes that expose
copy-on-write heaps. Building such primitives pushes the
responsibility down to where the semantics are understood,
yielding fork operations that are both correct and fast enough
to unlock large-scale, multi-path agentic exploration.

Frombenchmarks to the realworld. The snapshotmech-
anisms described above suffice only for isolated benchmark-
ing environments. Real deployments couple agents to databases,
browsers, and cloud APIs whose state lives beyond the local
filesystem or RAM. The simplest example is a live socket:
restoring a checkpoint invalidates the TCP sequence num-
bers, auth tokens, or DOM tree held by the remote peer. Thus,
we need to develop methods to enable general-purpose agen-
tic exploration without sacrificing correctness at scale. One
such example could be to expose fork-aware APIs whose side
effects are intrinsically versioned—much like S3’s object-
versioning, where each branch writes to an immutable com-
mit rather than mutating shared state.

Semantics of multi-agent exploration. In production
settings, multiple autonomous agents—and often live human
users—operate on the same resources at once, so the key
semantic question is what those other actors should observe
while one agent is branching speculatively. A conservative
design might reveal only committed trajectories, hiding ten-
tative side effects until they are finalized; this preserves serial
consistency but can cause costly merge conflicts. A more
optimistic design could let agents fork atop one another’s
in-flight trajectories, promoting richer collaboration yet ex-
ploding the state space combinatorially.

Acknowledgments
This workwas supported by the National Science Foundation
(1845638, 1740305, 2008295, 2106197, 2103794, 2312991) and

DAPLab funders (Amazon, Google, Intellect Design, Tidal-
wave, Veris).

References
[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,

John Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.
arXiv:arXiv:1606.01540

[2] Edward Y. Chang and Longling Geng. 2025. SagaLLM: Context Man-
agement, Validation, and Transaction Guarantees for Multi-Agent LLM
Planning. arXiv:2503.11951 [cs.AI] https://arxiv.org/abs/2503.11951

[3] CRIU Project. 2012. Checkpoint/Restore In Userspace (CRIU). https:
//criu.org/. Accessed: 2025-08-06.

[4] Aleksandra Eliseeva, Alexander Kovrigin, Ilia Kholkin, Egor Bogo-
molov, and Yaroslav Zharov. 2025. EnvBench: A Benchmark for
Automated Environment Setup. arXiv:2503.14443 [cs.LG] https:
//arxiv.org/abs/2503.14443

[5] Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki
Furuta, Gopala Anumanchipalli, Kurt Keutzer, and Amir Gholami. 2025.
Plan-and-Act: Improving Planning of Agents for Long-Horizon Tasks.
arXiv:2503.09572 [cs.CL] https://arxiv.org/abs/2503.09572

[6] Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao,
and Ping Luo. 2024. HiAgent: Hierarchical Working Memory Man-
agement for Solving Long-Horizon Agent Tasks with Large Language
Model. arXiv:2408.09559 [cs.CL] https://arxiv.org/abs/2408.09559

[7] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin
Pei, Ofir Press, and Karthik R Narasimhan. 2024. SWE-bench: Can
Language Models Resolve Real-world Github Issues?. In The Twelfth In-
ternational Conference on Learning Representations. https://openreview.
net/forum?id=VTF8yNQM66

[8] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulra-
jani, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023.
AlpacaEval: An Automatic Evaluator of Instruction-following Models.
https://github.com/tatsu-lab/alpaca_eval.

[9] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu
Lai, Yu Gu, Hangliang Ding, Kaiwen Men, Kejuan Yang, Shudan
Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang,
Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao
Dong, and Jie Tang. 2023. AgentBench: Evaluating LLMs as Agents.
arXiv:2308.03688 [cs.AI] https://arxiv.org/abs/2308.03688

[10] Neon Database. 2025. Neon: Serverless Postgres. https://github.com/
neondatabase/neon GitHub repository.

[11] The Terminal-Bench Team. 2025. Terminal-Bench: A Benchmark
for AI Agents in Terminal Environments. https://github.com/laude-
institute/terminal-bench

[12] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gi-
anluca De Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris,
Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea Pierré,
Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. 2024.
Gymnasium: A Standard Interface for Reinforcement Learning Envi-
ronments. arXiv:2407.17032 [cs.LG] https://arxiv.org/abs/2407.17032

3

https://arxiv.org/abs/arXiv:1606.01540
https://arxiv.org/abs/2503.11951
https://arxiv.org/abs/2503.11951
https://criu.org/
https://criu.org/
https://arxiv.org/abs/2503.14443
https://arxiv.org/abs/2503.14443
https://arxiv.org/abs/2503.14443
https://arxiv.org/abs/2503.09572
https://arxiv.org/abs/2503.09572
https://arxiv.org/abs/2408.09559
https://arxiv.org/abs/2408.09559
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://github.com/neondatabase/neon
https://github.com/neondatabase/neon
https://github.com/laude-institute/terminal-bench
https://github.com/laude-institute/terminal-bench
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032


[13] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng
Zhao, Ruisheng Cao, Toh Jing Hua, Zhoujun Cheng, Dongchan Shin,
Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caim-
ing Xiong, Victor Zhong, and Tao Yu. 2024. OSWorld: Benchmarking
Multimodal Agents for Open-Ended Tasks in Real Computer Environ-
ments. arXiv:2404.07972 [cs.AI] https://arxiv.org/abs/2404.07972

[14] Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng, Michel Gal-
ley, Jianfeng Gao, and Zhou Yu. 2025. ExACT: Teaching AI
Agents to Explore with Reflective-MCTS and Exploratory Learning.
arXiv:2410.02052 [cs.CL] https://arxiv.org/abs/2410.02052

[15] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhang-
haoWu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing,
Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-
a-Judge with MT-Bench and Chatbot Arena. arXiv:2306.05685 [cs.CL]
https://arxiv.org/abs/2306.05685

[16] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek
Sridhar, Xianyi Cheng, Yonatan Bisk, Daniel Fried, Uri Alon, et al. 2023.
WebArena: A Realistic Web Environment for Building Autonomous
Agents. arXiv preprint arXiv:2307.13854 (2023). https://webarena.dev

4

https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2410.02052
https://arxiv.org/abs/2410.02052
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://webarena.dev

	Abstract
	1 Agentic Exploration
	2 Exploration as State Restoration
	2.1 Existing Technologies and Benchmark

	3 The Missing Pieces
	Acknowledgments
	References

